The Effects of Wing Planforms on the Aerodynamic Performance of Thin Finite-Span Flapping Wings

نویسندگان

  • Meilin Yu
  • Z. J. Wang
  • Hui Hu
چکیده

A three-dimensional high-order unstructured dynamic grid based spectral difference (SD) Navier-Stokes (N-S) compressible flow solver with low Mach number preconditioning is used to investigate the effects of wing planforms on the aerodynamics performance of the thin finite-span flapping wings in this paper. Two types of wings, namely the rectangular and bio-inspired wings, are simulated and compared. The formation process of the ubiquitous two-jet-like wake patterns behind the finite-span flapping wing is explained at first. Then the effects of the wing planforms on the aerodynamics performance of the finite-span flapping wings are elucidated in the terms of the evolutions and dynamic interaction between the leading edge vortices (LEV), trailing edge vortices (TEVs) and the wing tip vortices (TVs) as well as the thrust generated by the flapping wings. Different types of LEVs have been discovered for different wing planforms with the flapping motion in the vertical direction, resulting in different aerodynamic performances. A combined plunging and pitching motion is then adopted to enhance the thrust production of the flapping wing, and it increases the amount of the thrust production by about thirty times when compared with the flapping motion only in the vertical direction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method

The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...

متن کامل

NUMERICAL ANALYSIS OF MAVs FLAPPING WINGS IN UNSTEADY CONDITIONS

Today, Flapping Micro Aerial Vehicles (MAV) are used in many different applications. Reynolds Number for this kind of aerial vehicle is about 104 ~ 105 which shows dominancy of inertial effects in comparison of viscous effects in flow field except adjacent of the solid boundaries. Due to periodic flapping stroke, fluid flow is unsteady. In addition, these creatures have some complexities in kin...

متن کامل

Aerodynamic Hovering Performance of Rigid and Flexible Wing Planform Shapes

Wing geometric parameters govern the aerodynamic performance of insects and micro aerial vehicles. Previous studies of wing shapes have been limited to rigid wings. The aerodynamic hovering performance of rigid and flexible wing shapes for aspect ratio AR = 1.5 is evaluated computationally at the Reynolds number (Re) of 400. The three-dimensional viscous incompressible Navier-Stokes equations a...

متن کامل

Structural Analysis of a Dragonfly Wing

Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned for carrying these loads, is however not fully understood. To study this we made a three-dimensio...

متن کامل

Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta.

During flapping flight, insect wings must withstand not only fluid-dynamic forces, but also inertial-elastic forces generated by the rapid acceleration and deceleration of their own mass. Estimates of overall aerodynamic and inertial forces vary widely, and the relative importance of these forces in determining passive wing deformations remains unknown. If aeroelastic interactions between a win...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011